...

0 голосов
56 просмотров

ПОМОГИТЕ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!МОЖНО РЕШЕНИЕ КАРТИНКОЙ ОТПРАВИТЬ?


image
image
image

Геометрия (336 баллов) | 56 просмотров
Дан 1 ответ
0 голосов

2) Вычислим сначала высоту трапеции. Так как в прямоугольном треугольнике есть угол в 30 градусов, то, согласно теореме, напротив этого угла лежит катет, который  в два раза меньше гипотенузы. Значит, искомая высота равна 3/2=1,5.
Площадь трапеции: S= \frac{a+b}{2}h= \frac{1+7}{2}*1,5=4*1,5=6.

3)  Составим пропорцию:
\frac{1,6}{4} = \frac{2}{x+2}
1,6*(x+2)=2*4
x+2= \frac{8}{1,6}
x+2= 5,

x=3

4) Так как OA=OB=R - радиус, значит треугольник AOB - равнобедренный. В равнобедренном треугольники углы при основании равны, т.е. угол OAB = углу OBA = (180 градусов - угол AOB) :2 = (180-60):2=120:2=60 градусов.
Все углы равны, значит, треугольник АОВ равносторонний. Таким образом R=4, т.к. по условию АВ=4.

5) синус - это отношение противоположного катета к гипотенузе. Значит, имеем:
sinA= \frac{BC}{AB}
Выразим АВ:
AB= \frac{BC}{sinA}= \frac{4}{0,8}= 5.

(918 баллов)