Докажите что если в уравнении x²+px+q+0 коэффиценты p и q целые числа и уравнение имеет...

0 голосов
71 просмотров

Докажите что если в уравнении x²+px+q+0 коэффиценты p и q целые числа и уравнение имеет рациональные корни то эти корни целые числа


Алгебра (32 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если это уравнение имеет рациональный, но не целый корень, то этот корень всегда можно записать в виде m/n, при этом m,n - взаимно просты и n>1. 
Тогда m²/n²+pm/n+q=0. Умножим это равенство на n и перенесем слагаемые в правую часть. Получим m²/n=-qn-pm, т.е. число m²/n - целое. Поэтому, если r - это какой-нибудь простой делитель числа n, то r делит m², а значит r делит m. Т.е., получается, что m и n не взаимно просты. Противоречие. Значит n=1, т.е. m/n - целое.

(56.6k баллов)