0\\4x^2-20x+25<0\\(2x-5)^2<0\\x_1=x_2=\frac{5}{2}=2,5\\+ + + (2,5)+ + + + \\net\;\; reshenij\\3)-x^2-7x-10 \leq 0\\x^2+7x+10 \geq 0\\x_1=-5,x_2=-2\\+ + +(-5)- - - -(-2)+ + + +\\x\in (-\infty,-5)U(-2,+\infty)\\4)x^2-6x+5 \geq 0\\x_1=1,x_2=5\\+ + + +(1)- - - -(5)+ + + +\\x\in (-\infty,1)U(5,+\infty)" alt="2)-4x^2+20x-25>0\\4x^2-20x+25<0\\(2x-5)^2<0\\x_1=x_2=\frac{5}{2}=2,5\\+ + + (2,5)+ + + + \\net\;\; reshenij\\3)-x^2-7x-10 \leq 0\\x^2+7x+10 \geq 0\\x_1=-5,x_2=-2\\+ + +(-5)- - - -(-2)+ + + +\\x\in (-\infty,-5)U(-2,+\infty)\\4)x^2-6x+5 \geq 0\\x_1=1,x_2=5\\+ + + +(1)- - - -(5)+ + + +\\x\in (-\infty,1)U(5,+\infty)" align="absmiddle" class="latex-formula">