Через вершину А ромба ABCD проведена прямая SA, перпендикулярная плоскости ромба....

0 голосов
170 просмотров

Через вершину А ромба ABCD проведена прямая SA, перпендикулярная плоскости ромба. Докажите, что точка S равноудалена от прямых CB и CD.


Геометрия (86 баллов) | 170 просмотров
Дан 1 ответ
0 голосов

Опустим из точки S перпендикуляры: SH на сторону BC и SF на сторону CD. 
SH - наклонная, AS - перпендикуляр, AH - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если BC перпендикулярно SH, то BC перпендикулярно AH, следовательно, AH - высота.
SF - наклонная, AS - перпендикуляр, AF - проекция;
Согласно теореме, обратной теореме о 3 перпендикулярах, если CD перпендикулярно SF, то CD перпендикулярно AF, следовательно, AF - высота.
Рассмотрим прямоугольные треугольники SAF и SAH:
1) AS - общая сторона;
2) AF=AH - т.к. высоты ромба;
Следовательно, треугольники равны по 2 катетам. Значит, SH=SF, т.е. точка S равноудалена от прямых BC и CD, что и требовалось доказать.

(3.1k баллов)
0

спасибо вам огромное!!! очень выручили. можете еще с одной или двумя помочь?

0

???