№1
0.3^(6x-1)-0.3^(6x)≥0.7
Пусть 0.3^(6x) = t
t/0.3 - t ≥ 0.7
(2+1/3)t ≥ 0.7
t ≥ 0.3
0.3^(6x) ≥ 0.3^1
6x ≤ 1
x ≤ 1/6
№2
(1/3)^(2x) + (1/3)^(x-2) -162 = 0
Пусть 1/3^x = t
t^2 + 9t - 162 = 0
t1 = -18, t2 = 9
(1/3)^x ≠ -18
(1/3)^x = 9
x = -2
№3
(1/√3)^(3x^2-13x) > 9
3x^2-13x = -4
3x^2 - 13x +4 = 0
x1=1/3, x2 = 4
№4
3 + 2 * 3^x - 9^x > 0
Пусть a = 3^x
-a^2+2a+3
a1 = -1, a2 = 3
3^x ≠ -1
3^x = 3
x = 1