Радиус равен 15, касательная и прямая AB пересекаются в некоторрй точке T, иначе расстояния от любой точки AB до касательной равны (и равны радиусу, т. к. радиус, проведенный в точку C ⊥ касательной) и равны 15, что противоречит условию. Так как расстояние от A до касательной меньше, чем от центра окружности O до касательной, то T лежит ближе к A, чем к B.
Проведем перпендикуляры из A и B к касательнрй AH и BK соответственно. Треугольники TAH, TOC, TBK подобны, т.к. имеют общий угол BTK, а также по углу в 90° (по 2 равным углам). Пусть TA = x, BK = y
тогда из отношений подобия:
AO и OC - радиусы, равны 15
AB - диаметр, равен 30
AH по условию равно 6
подставляем и находим x из первого равенства:
находим y:
Ответ: 24