Рисунок 471. Треугольник АВС. ВN= 8, NС=4, АС=15, МА=3 см. МN=10 Найти ВМ

0 голосов
634 просмотров

Рисунок 471. Треугольник АВС. ВN= 8, NС=4, АС=15, МА=3 см. МN=10 Найти ВМ


image

Геометрия (14 баллов) | 634 просмотров
Дан 1 ответ
0 голосов

Треугольник ABC   и Треугольник  MBN  подобные.
  Отрезок BM отметим как неизвестное "х"
То стороны треугольника ABC -   Сторона AB= MA+BN=3+x
BC=BN+ NC=8+4=12
AC=15
Стороны треугольника MBN  -    MB=x      BN=8   MN=10
По формулам подобия треугольников, решаем: 
(3+х)/х= 12/8
(3+х)*8=х*12
24+8х=12х
12х-8х=24
4х=24
х=24/4
х=6
Ответ: ВМ=6


(272 баллов)