** рисунке изображена прямая треугольная призма АВСА1В1С1, длины всех ребер которой...

0 голосов
287 просмотров

На рисунке изображена прямая треугольная призма АВСА1В1С1, длины всех ребер которой равны. Точка О-середина ребра АС. Вычислите объем пирамиды В1ВОС, если известно, что длина ее большего бокового ребра равна 6 корней из 2 см.


image

Геометрия (115 баллов) | 287 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть АВ=ВС=АС=АА₁=ВВ₁=СС₁=х
В пирамиде В1ВОС большее боковое ребро В₁С.
Его проекция ВС больше чем проекция BO другого бокового ребра B₁O.
Из прямоугольного треугольника ВВ₁С по теореме Пифагора
BB₁²+BC²=B₁C²
x²+x²=(6√2)²;
2x²=72;
x²=36;
x=6

S (Δ BOC)=(1/2)·BC·CO·sin∠C= (1/2)·6·3·√3/4=18√3/8=9√3/4.
V( пирамиды В₁ВОС)=(1/3)·S( Δ BOC)·CC₁=(1/3)·(9√3/4)·6=9√3/2

(414k баллов)