** доске было написано пять целых чисел – коэффициенты и корни некоторого квадратного...

0 голосов
156 просмотров

На доске было написано пять целых чисел – коэффициенты и корни некоторого квадратного трёхчлена. Одно из них стерлось, и остались числа 2,3,4,−5

. Какое наибольшее значение могло быть у стертого числа?


Математика (1.9k баллов) | 156 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

У нас есть квадратный трехчлен: ax^2 + bx + c = 0, имеющий корни x1 и x2
Будем подбирать по корням.
2(x - 3)(x - 4) = 2x^2 - 14x + 24 - нет.
2(x - 3)(x + 5) = 2x^2 + 4x - 30 - подходит, неизвестное -30, корни 3 и -5.
2(x - 4)(x + 5) = 2x^2 + 2x - 20 - нет
3(x - 2)(x - 4) = 3x^2 - 18x + 24 - нет
3(x - 2)(x + 5) = 3x^2 + 9x - 30 - нет
3(x - 4)(x + 5) = 3x^2 + 3x - 60 - нет
4(x - 2)(x - 3) = 4x^2 - 20x + 24 - нет
4(x - 2)(x + 5) = 4x^2 + 12x - 40 - нет
4(x - 3)(x + 5) = 4x^2 + 8x - 60 - нет
-5(x - 2)(x - 3) = -5x^2 + 25x - 30 - нет
-5(x - 2)(x - 4) = -5x^2 + 30x - 40 - нет
-5(x - 3)(x - 4) = -5x^2 + 35x - 60 - нет
Вариант только один: -30.

(320k баллов)