Помогите с решением пожалуйста. sin2xcos2x-sinxcosx=0 иsin +cos  =1

0 голосов
57 просмотров

Помогите с решением пожалуйста.
sin2xcos2x-sinxcosx=0
и
sin \frac{x}{4}+cos \frac{x}{4} =1


Алгебра (15 баллов) | 57 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) По формулам двойного аргумента
sin 2a = 2sin a*cos a
Поэтому
sin 2x*cos 2x - sin x*cos x = 1/2*sin 4x - 1/2*sin 2x = 0
sin 4x - sin 2x = 0
По формуле разности синусов
sin a - sin b = 2sin((a-b)/2)*cos((a+b)/2)
Поэтому
sin 4x - sin 2x = 2sin((4x-2x)/2)*cos((4x+2x)/2) = 2sin x*cos 3x = 0
Произведение равно 0, когда один из множителей равен 0
sin x = 0; x1 = pi*k
cos 3x = 0; 3x = pi/2 + pi*n; x2 = pi/6 + pi*n/3
2) Есть такая формула
sin a + cos a = √2*(sin a*1/√2 + cos a*1/√2) = 
= √2*(sin a*cos pi/4 + cos a*sin pi/4) = √2*sin (a+pi/4)
Поэтому
sin (x/2) + cos (x/2) = √2*sin (x/2 + pi/4) = 1
sin (x/2 + pi/4) = 1/√2
x/2 + pi/4 = pi/4 + 2pi*k; x/2 = 2pi*k; x1 = 4pi*k
x/2 + pi/4 = 3pi/4 + 2pi*n; x/2 = 2pi/4 + 2pi*n = pi/2 + 2pi*n; x2 = pi + 4pi*n

(320k баллов)
0

спасибо

0

Ой, я не заметил, что во 2 задании x/4. Будет x1 =8pi*k; x2 = 2pi+8pi*n