Найти значение производной в точке х0: 1.f (x)=1/5x^5-4x+8, x0=2 2.f (x)=x^2+1/x-1, x0=-1...

0 голосов
452 просмотров

Найти значение производной в точке х0:
1.f (x)=1/5x^5-4x+8, x0=2
2.f (x)=x^2+1/x-1, x0=-1
3.f (x)=(x^3+7)(3x^2-1), x0=-1
4.f (x)=5x×cosx+2, x0=п/2

Найти производную функции:
1.f (x)=3^4x-1
2.f (x)=2sin (2.5x-2)
3.f (x)= корень из 3x^2+1
4.f (x)=ln (2x^3+x)


Алгебра (24 баллов) | 452 просмотров
Дан 1 ответ
0 голосов

№1
1) f'(x)=x^4-4; f'(2)=16-4=12
2) f'(x)=2x- \frac{1}{(x-1)^2} ;f'(-1)=-2- \frac{1}{(-2)^2} =-2.25
3) f'(x)=3x^2(3x^2-1)+6x(x^3+7);f'(-1)=3*2-6*6=-30
4) f'(x)=5cosx-5xsinx;f'( \frac{ \pi }{2} )=- \frac{5 \pi }{2}
#2
1)f'(x)=3^{4x}*ln 3*4 (если -1 не стоит в степени)
2) f'(x)=5cos(2.5x-2)
3) f'(x)= \frac{3x}{ \sqrt{3x^2+1} }
4) f'(x)= \frac{6x^2+1}{2x^3+x}

0

Спасибі!!