25 баллов 1/1*2+1/2*3+1/3*4+...1/n(n+1)=n/n+1

0 голосов
40 просмотров

25 баллов 1/1*2+1/2*3+1/3*4+...1/n(n+1)=n/n+1


Алгебра (93 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Докажем методом математической индукции:
1) Для n = 1 (базис индукции)
1/1(1 + 1) = 1/(1 + 1)
1/2 = 1/2

2) Пусть n = k равенство (1) выполняется:
1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = k/(k + 1)

3) Докажем теперь, что при n = k + 1 равенство выполняется (шаг индукции):
1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) + 1/(k + 1)(k + 2) = (k + 1)/(k + 2)

1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = (k + 1)/( k + 2) - 1(/k + 1)( k + 2)

Приведем дроби в правой части к общему знаменателю:
(k + 1)² - 1/(k + 1)(k + 2) = (k² + 2k + 1 - 1)/(k + 1)(k + 2) = (k² + 2k)/(k + 1)(k + 2) = k(k + 2)/(k + 1)(k + 2) = k/(k + 1)
Теперь запишем то, что должно получиться:

1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = k/(k + 1)
Мы пришли к равенству (1), которое предполагало, что при n = k данное равенство верно, значит, при любом натуральном n равенство верно. Доказано.

(145k баллов)