1)3sinx-√3 cosx=32)4sinx+6cosx=1помогите с решением пожалуйста! (если можно то с...

0 голосов
93 просмотров

1)3sinx-√3 cosx=3
2)4sinx+6cosx=1
помогите с решением пожалуйста!
(если можно то с подробным решением)


Алгебра (15 баллов) | 93 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
1) 3sinx-√3 cosx=3;
Уравнения вида asinx+bcosx=c решаются следующим образом:
1) нужно разделить обе части уравнения на выражение 
√(a²+b²);
a=3, b=-√3; √(3²+(-√3)²)=√(9+3)=√12=2√3;
2) получаем уравнение вида
√3/2sinx-1/2cosx=√3/2; (√3/2=cosπ/6, 1/2=sinπ/6);
Далее используем формулу сложения (сумму или разность для синуса):
sinx*cos
π/6-cosx*sinπ/6=√3/2;
sin(x-π/6)=√3/2;
x-π/6=(-1)^(k)*arcsin(√3/2)+πk, k∈Z;
x-π/6=(-1)^(k)*π/3+πk,k∈Z;
x=(-1)^(k)*π/3+π/6+πk, k∈Z.
Ответ: (-1)^(k)*π/3+π/6+πk, k∈Z.

Во втором уравнении несколько сложней, так как получаются не табличные значения.
Для уравнения вида asinx+bcosx=c есть равносильное уравнение
sin(x+
α)=c/√(a²+b²), где α=arccos a/√(a²+b²), α=arcsin b/√(a²+b²), α=arctg b/a.
2) 
4sinx+6cosx=1;
a=4, b=6, √(4²+6²)=√(16+36)=√52=2√13;
В этом уравнении удобнее взять α=arctg b/a=arctg 6/4=arctg 3/2.
Получаем
sin(x+arctg 3/2)=√13/26;
x=(-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
Ответ: (-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.

(14.0k баллов)