Все просто
Для решения данной задачи воспользуемся теоремой о сумме углов выпуклого многоугольника.
Теорема гласит: Для выпуклого n-угольника сумма углов равна 180°(n-2).
Значит, для нашего случая:
180(n-2)=3*80+x*150, где
3 угла по 80 градусов нам даны по условию задачи, а количество остальных углов нам пока неизвестно, значит обозначим их количество как x.
Однако, из записи в левой части мы определили количество углов многоугольника как n, поскольку из них величины трех углов мы знаем по условию задачи, то очевидно, что x=n-3.
Таким образом уравнение будет выглядеть так:
180(n-2)=240+150(n-3)
Решаем полученное уравнение
180n - 360 = 240 + 150n - 450
180n - 150n = 240 + 360 - 450
30n = 150
n=5
Ответ: 5 вершин