1) y=(3x²-2·⁴√x+5)⁵ y'=5(3x²-2·⁴√x+5)⁴·[6x-2·(1/4)x^(3/4) ]
2) y=[√(2-x²)]/cos2x y'={1/[2√(2-x²)]·(-2x) cos2x -(- 2sin2x[√(2-x²)]}/cos²2x= ={-xcos2x+2sin2x·(2-x²)}/[√(2-x²) ·cos²2x]
3)y=e^arcsinx ·cos4x y'=e^arcsinx ·[1/√(1-x²)]·cos4x -4sin4x ·e^arcsinx=
=e^arcsinx ·[cos4x-4sin4x ·√(1-x²)] /√(1-x²)
4) y=arctg(ln5x) y'=1/(1+ln²5x) ·[1/(5x) ·5]=1/[x·(1+ln²5x)]