Моторная лодка прошла 12км против течения реки и 12км по течению реки,затратив на путь против течения на 1 час больше,чем на путь по теченю. Найти скорость течения реки,если скорость лодки в стоячей воде 9км/ч
там в задаче ответ 3 , но у меня не получается решение, получается -3
Скорость течения реки = Х(км/час) Скорость по течению (9+Х) км/час Скорость против течения (9-Х)км/час Время по течению 12/(9+Х) час. Время против течения 12/(9-Х) час. Уравнение: 12/(9-Х) + 1= 12(9+Х) 12(9+Х) + (9-Х)(9+Х) = 12(9-X) 108+12Х + 81-9Х +9Х-Х^2 = 108 -12X -X^2 + 24X+81 =0 X^2 -24X -81 = 0 D = 576 -4(-81) =576 +324 =Y900; D=30 X1 = (-24 +30)/ 2 = 3 X2 = (-24 - 30)/2 = -27 ( не подходит по условию задачи) Ответ: 3 км/час - скорость течения реки. X^2 +24X-108-81 =0 X^2 +24X - 189 = 0 D = 576 -4(-189) = 576 + 756=1332
12/(9-x)-1=12/(9+x) 24x=81-x^2 x^2+24x-81=0 x=-12+sqrt(144+81)=-12+15=3 ответ скорость течения 3 км/ч