Для функции f(x)= e^2-x напишите уравнение касательной к графику в точке с абсциссой 1

0 голосов
30 просмотров

Для функции f(x)= e^2-x напишите уравнение касательной к графику в точке с абсциссой 1


Математика (15 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Касательная есть не что иное, как прямая. Любую прямую можно представить в виде:
y = k*x + b

k - коэффициент наклона, равен значению производной в точке касания.
(e^(2 - x))' = -e^(2 - x)
При х = 1 получаем -e
Значение функции и касательной в заданной точке должны совпадать.

e^(2 - 1) =  -e * 1 + b

Откуда b  = 2*e

Получаем уравнение для касательной:

y = -e*x + 2*e

(63.7k баллов)