Пусть имеем две окружности с центрами O и Q, AB- касательная, которая касается окружностей в т. A и B, BO=7, AQ=2, OQ=13. Из точки Q на BO проведем перпендикуляр QK, тогда ABKQ- прямоугольник, так как углы A и B - прямые по условию, а угол K=90 градусов по построению, тогда AQ=BK и AB=QK
OK=OB-BK
OK=7-2
OK=5
Из прямоугольного треугольника QKO по теореме Пифагора
(QK)^2=(QO)^2-(OK)^2=(13)^2-5^2=169-25=144
QK=12
а значит и AB длина общей касательной равна 12