Считаем варианты при одной оценке хорошо, а остальные отлично
это число сочетаний из одного элемента хорошо по шести студентам. ведь каждый может получить хорошо, а остальные отлично, а не только один.
С из1 по6 ( как правильно записать смотрите формулу размещения)
С=6!/(1!(6-1)!=6
теперь считаем все варианты комбинаций когда выставляют две оценки хорошо комбинируя при этом разных студентов, а остальным соответственно ставятся отлично
это число сочетаний из 2 по6
С=6!/(2!(6-2)!)=15
теперь три оценки хорошо, а остальные отлично
С=6!/(3!(6-3)!)=20
теперь из 4 хорошо, а остальные отлично
С=6!/(4!(6-4)!)=15 - ответ получился такой же как из 2по6 потому что это как будто мы выставляемых две оценки отлично, а остальные хорошо.
и последнее это 5 оценок хорошо, а одна отлично
С=6!(5!(6-5)!)=6
теперь складывает все варианты и получаем количество возможных комбинаций
6+15+20+15+6=62 способа
в качестве примера прикладывают фото возможных вариантов при выставлении одной оценки хорошо, а остальные отлично и 2 хорошо а остальные отлично.
эти варианты имеют право на существование в данной задаче, а не только один из них