** сторонах АВ и ВС треугольника АВС как ** основаниях построены одинаково...

0 голосов
17 просмотров

На сторонах АВ и ВС треугольника АВС как на основаниях построены одинаково ориентированные квадраты АВМN и ВСОР. Обозначим их центры через О1 и О2, середину стороны АС – через К, а середину отрезка МР - через L. Доказать, что четырёхугольник O1LO2К - квадрат. ПОМОГИТЕ, СРОЧНО НАДО НА ЗАЧЁТ!


Геометрия (20 баллов) | 17 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Я в другом месте Вам выложил векторное решение, а тут - простое и элементарное:)

При повороте на 90 градусов вокруг общей для двух квадратов вершины В стороны квадратов переходят "в себя" - точнее, сторона ВС переходит в ВР, а сторона МВ - в АВ. Или, что то же самое - точка С переходит в Р, а точка М - в А.

Удивительным образом отсюда сразу следует ответ :)

В самом деле, получается, что в четырехугольнике АМРС про повороте на 90 градусов диагональ МС переходит в диагональ АР.  То есть они равны и перпендикулярны :)

А стороны искомой фигуры соединяют середины соседних сторон четырехугольника АМРС, поэтому равны половинам диагоналей и параллельны им (например, О1К - средняя линяя в треугольнике АМС, поэтому она параллельна МС и равна её половине, и так все 4 стороны четырехугольника О1LO2K).

Поэтому четырехугольник О1LO2K - квадрат :)

 

У Прасолова в его сложнейшем задачнике эта задача помечена * (особой сложности :)) У него приведено векторное решение, похожее на которое (более понятное) я выложил тут в другом месте. Но это решение, по-моему, снимает все вопросы.

(69.9k баллов)