Являются ли пифагоровыми треугольниками следующие треугольники: а) с гипотенузой 25 и...

0 голосов
66 просмотров

Являются ли пифагоровыми треугольниками следующие треугольники:

а) с гипотенузой 25 и катетом 15;

б) с катетами 5 и 4.


Геометрия (5.6k баллов) | 66 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Прежде чем решать задачу вспомним теорию:
что такое "Пифагоров треугольник"? 

будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство a^2+b^2=c^2.
т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.

Египетский треугольник это частный случай Пифагорова треугольника, т.е.  к такому набору дополняется условие что 

a^2+b^2=c^2
a:b:c= 3:4:5

Пример числа 5,12,13 - Пифагоровы т.к. справедливо что 
5^2+12^2=13^2
но они не будут образовывать Египетский треугольник
т.к. 5:12:13 ≠ 3:4:5



Теперь перейдем к решению: 

1) Найдет все стороны треугольника

По т. Пифагора второй катет: 
\sqrt{25^2-15^2}= \sqrt{400}=20

Измерения треугольника 15,20,25

Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство  15²+20²=25²

Проверим, будет ли такой треугольник Египетским: 

Египетский треугольник: 
Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5

Проверим отношение сторон в нашем треугольнике

15:20:25= 3:4:5

Значит такой треугольник Пифагоров и как частный случай Египетский

2) Треугольник с катетами 4,5

найдем гипотенузу

\sqrt{4^2+5^2}= \sqrt{16+25}= \sqrt{41}

по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым

(72.1k баллов)