В треугольнике АВС где АВ=ВС . ** высоте ВЕ взята точка Р, а ** сторонах АВ и ВС - точка...

0 голосов
43 просмотров

В треугольнике АВС где АВ=ВС . НА высоте ВЕ взята точка Р, а на сторонах АВ и ВС - точка М и К соответственно.(точка М , Р и К не лежат на одной прямой ). Известно , что ВМ = ВК . Докажите что угол МРВ = углу КРВ


Геометрия (12 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

В равнобедренном треугольнике АВС стороны АВ = ВС (и МВ=ВК), угоп ВАЕ = углу ВСЕ, ВЕ - высота и биссектриса, делит угол АВС пополам. Угол АЕВ = углу СЕВ. Отсюда: Угол МВР = углу КВР, сторона ВР для треуг-ов МВР и КВР является общей и лежит на биссектрисе. Значит и стороны МР и КР равны, угол ВМР = углу ВКР и угол МРВ = углу КРВ

(6.6k баллов)