В треугольнике ABC угол А=60 градусов,угол С =45 градусов,а сторона ВС = 3 корня из 3....

0 голосов
63 просмотров

В треугольнике ABC угол А=60 градусов,угол С =45 градусов,а сторона ВС = 3 корня из 3. Используя теорему синусов,найдите сторону АВ


Математика (14 баллов) | 63 просмотров
Дан 1 ответ
0 голосов

По теореме синусов \frac{a}{sinA}  =  \frac{b}{sinB}  =  \frac{c}{sinC}
Приму сторону AB за с, т.к. она лежит напротив угла C
Приму сторону BC за a, т.к она лежит напротив угла A
Составлю пропорцию так, чтобы в одной дроби была неизвестная сторона с,
 а во второй чтобы сторона и угол были известны:
\frac{c}{sinC} = \frac{a}{sinA}
\frac{c}{sin45} = \frac{a}{sin60}
Основное свойство пропорции произведение крайних членов равно произведению средних т.е. умножаю крест накрест
c*sin60=sin45*a
c= \frac{sin45*a}{sin60}
c= \frac{ \frac{ \sqrt{2}}{2 } * 3 \sqrt{3} }{ \frac{ \sqrt{3} }{2} }
c= \frac{ \sqrt{2}}{2 } * 3 \sqrt{3} }*{ \frac{ 2 }{ \sqrt{3} } }
с= \frac{ \sqrt{2}}{2 } * 6
с= \frac{ 6\sqrt{2}}{2 }
с= 3 \sqrt{2}
 

(1.4k баллов)