2 (1–sin²x) + 1 = 2√2 cos( п + ( п/2–x ) ) ;
2 – 2sin²x + 1 = – 2√2 cos( п/2–x ) ;
2sin²x – 3 = 2√2 sinx ;
y = sinx ;
2 y² – 2√2 y – 3 = 0 ;
D = 2 + 6 = 8 = (2√2)² ;
y = ( √2 ± 2√2 ) / 2
y(1) = –√2/2 ; |y(1)| < 1 ;
y(2) = 3√2/2 ; |y(2)| > 1 ;
sinx = –√2/2 ;
x(n1) = –п/4+2пn ; n in Z ; (первая n-серия)
первая n-серия лежит в IV квадранте.
x(2) = –3п/4+2пn ; n in Z ; (вторая n-серия)
вторая n-серия лежит в III квадранте.
интервал [ 3п/2 ; 3п ] – это IV квадрант первого круга и первая половина (I-ый и II-ой квадранты) второго круга.
Итак подходит только корень x = –п/4+2пn ; n = 1 , т.е.:
x = –п/4+2п = 7п/4.