Точка А(9;-2;-9) в центральной симметрии относительно центра С переходит в точку...

0 голосов
88 просмотров

Точка А(9;-2;-9) в центральной симметрии относительно центра С переходит в точку В(-5;-2;3) . Определить координаты С


Геометрия (496 баллов) | 88 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Известно, что центр симметрии находится посередине между точкой и её образом. Таким образом, достаточно найти координаты середины отрезка AB. Каждая из координат середины равна полусумме координат концов, то есть, (\frac{9-5}{2},\frac{-2-2}{2},\frac{-9+3}{2})=(2,-2,-3). Значит, центр симметрии имеет координаты C(2,-2,-3).

(47.5k баллов)
0 голосов

Х(С) = (х(а) +х(В))/2 
остальные координаты соответственно 
х(С) = (9+(-5))/2 = 2
у(С) = (-2+(-2))/2 = -2
z(C) = ( -9 +3)/2 = -3
C(2; -2;-3)

(28.2k баллов)