G; помогите решить неравенство
Ответ в приложениях (4 фотки)
ОДЗ {x-1>0⇒x>0 {x+1>0⇒x>-1 {(x+1)/(x-1)>0⇒x<-1 U x>1 {(x+1)/(x-1)≠1⇒x+1≠x-1⇒x∈R x∈(1;∞) log(2)[(x-1)/(x+1)]+1/log[(x+1)/(x-1)]2>0 log(2)[(x-1)/(x+1)]-1/log(2)[(x-1)/(x+1)]>0 log(2)[(x-1)/(x+1)]=a a-1/a>0 (a²-1)/a>0 (a-1)(a+1)/a>0 a=1 a=-1 a=0 _ + _ + --------------(-1)-------------(0)-----------------(1)--------------- -11 -11 {log(2)[(x-1)/(x+1)]>-1⇒(x-1)/(x+1)>1/2⇒(2x-2-x-1)/(x+1)>0⇒(x-3)/(x+1)>0 {log(2)[(x-1)/(x+1)]<0⇒(x-1)/(x+1)<1⇒(x-1-x-1)/(x+1)<0⇒2/(x+1)>0 x<-1 U x>3 U x>-1⇒x>3 log(2)[(x-1)/(x+1)]>1 (x-1)/(x+1)>2 (x-1-2x-2)/(x+1)>0⇒(x+3)/(x+1)<0⇒-3<x<-1<br>Ответ x∈(3;∞)