Чертежик во вложении.
Т.к. диагональ АС - биссектриса угла А, то ∠1=∠2.
Отсюда ∠2=∠3 (накрестлежащие).
Значит, ∠1=∠3 и ∆АВС-равнобедренный с основанием АС, тогда АВ=ВС=15 см.
Проведем высоты ВН и СК. Т.к. HBCK-прямоугольник, то ВС=НК.
Прямоугольные треугольники АВН и СДК равны по гипотенузе и катету, значит, у них АН=КД=(33-15)/2=9 см.
В прямоугольном ∆АВН по теореме Пифагора
Ответ: 288 см2.