Решите логарифмическое неравенство: LOG1/6 (10-x) + LOG1/6 (x-3) ≥ -1

0 голосов
226 просмотров

Решите логарифмическое неравенство:

LOG1/6 (10-x) + LOG1/6 (x-3) ≥ -1


Алгебра (318 баллов) | 226 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

ОДЗ
{10-x>0⇒x<10<br>{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)

(750k баллов)
0

Добавьте пояснения, пожалуйста.