Найдите пять последовательных целых чисел, если известно, что сумма квадратов трех первых...

0 голосов
91 просмотров

Найдите пять последовательных целых чисел, если известно, что сумма квадратов трех первых чисел равна сумме квадратов двух последних


Алгебра (57.1k баллов) | 91 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Примем

а1- первое число

а2 - второе число

а3 - третье число

а4 - четвертое число

а5 - пятое число

тогда

а2=а1+1

а3=а2+1=а1+2

а4=а3+1=а1+3

а5=а4+4=а1+4

(а1)^2+(a2)^2+(a3)^2=(a4)^2+(a5)^2

(а1)^2+(а1+1)^2+(а1+2)^2=(а1+3)^2+(а1+4)^2

(а1)^2+(а1)^2+2*a1+1+(а1)^2+4*a1+4=(а1)^2+6*a1+9+(а1)^2+8*a1+16

(а1)^2+(а1)^2+2*a1+1+(а1)^2+4*a1+4-(а1)^2-6*a1-9-(а1)^2-8*a1-16=0

(а1)^2-8*a1-20=0

Квадратное уравнение, решаем относительно a1:
Ищем дискриминант:
D=(-8)^2-4*1*(-20)=64-4*(-20)=64-(-4*20)=64-(-80)=64+80=144;
Дискриминант больше 0, уравнение имеет 2 корня:
a1_1=10;
a1_2=-2.

Тогда

а2_1=а1_1+1=10+1=11

а3_1=а2_1+1=11+1=12

а4_1=а3_1+1=12+1=13

а5_1=а4_1+1=13+1=14

 

а2_2=а1_2+1=-2+1=-1

а3_2=а2_2+1=-1+1=0

а4_2=а3_2+1=0+1=1

а5_2=а4_2+1=1+1=2

Проверим:

10^2+11^2+12^2=13^2+14^2--->365=365

(-2)^2+(-1)^2+0^2=1^2+2^2--->5=5

Ответ:

ответом являются две группы последовательных целых чисел:

1) 10; 11; 12; 13; 14

2) -2; -1; 0; 1; 2

 

 

 

 

(23.2k баллов)