отрезок бд диаметр окружности с центром о, хорда ас делит пополам радиус ов и...

0 голосов
113 просмотров

отрезок бд диаметр окружности с центром о, хорда ас делит пополам радиус ов и перпендикулярна к нему.найдите углы четырёх угольника авсд и градусные меры дуг ав, вс, сд, ав Напишите ПЖЛ решение!!


Геометрия (29 баллов) | 113 просмотров
Дан 1 ответ
0 голосов

Соединим центр окружности О с точками А и С. Полученный четырехугольник ВАОС- ромб, т.к. его диагонали ВО и АС пересекаются под прямым углом и делятся в точке пересечения пополам.Меньшая диагональ ромба равна радиусу окружности. Обозначим вторую диагональ 2х. По теореме об отрезках пересекающихся хорд получим

x\cdot x=\frac{r}{2} \cdot \frac{3r}{2}\\x^{2}=\frac{3r^{2}}{4}\\x=\frac{\sqrt{3}r}{2}

Эта диагональ делит наш ромб на два равных равнобедренных треугольника. Рассмотрим один из этих треугольников АОС. Используя теорему косинусов найдем косинус угла АОС.

AC^{2}=AO^{2}+OC^{2}-2AO\cdot OC\cdot cos AOC\\3r^{2}=r^{2}+r^{2}-2r^{2}\cdot cos AOC\\r^{2}=-2r^{2}\cdot cos AOC\\cos AOC=-\frac{1}{2}\\AOC=120^{0}\\ABC=120^{0}

Угол АОС- центральный, а угол АDС - соответствующий ему вписанный, поэтому он равен половине центрального АОС, т.е. угол АDС=60 градусов.Углы ВАD и ВСD равны и равны 90 градусов, потому что они опираются на диаметр окружности. Таким образом углы четыврехугольника равны : угол В=120, угол D =60, угол А и угол С по 90. Так как центральные углы АОС, АОD и СОD равны и образуют вместе 360 градусов, то каждый из них равен 120 градусов. зная это определим градусную меру дуг. Дуга АВ = дуге ВС = 60 градусов. Дуга АD= дуге СD= 120 градусов.

(1.0k баллов)