Треугольник АВС-равнобедренный с осн. АВ. Биссектриса углов при осн. пересекаются в точке...

0 голосов
31 просмотров

Треугольник АВС-равнобедренный с осн. АВ. Биссектриса углов при осн. пересекаются в точке D. угол ADB=100 градусов. Найти угол С.


Геометрия (90 баллов) | 31 просмотров
Дан 1 ответ
0 голосов

В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. 
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. 
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. 
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.

(88 баллов)