Изучая обыкновенные дроби, мы говорили про их сокращение. Сокращением обыкновенной дроби мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9.
Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен, в частности, одночлен или число.
Например, алгебраическую дробь можно сократить на число 3, что даст дробь . Также можно выполнить сокращение на переменную x, что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x, а также на любой из многочленов x+2·y, 3·x+6·y, x2+2·x·y или 3·x2+6·x·y.
Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби