вписанная в прямоугольный треугольник окружность делит гипотенузу ** отрезки длиной 3 и...

0 голосов
71 просмотров
вписанная в прямоугольный треугольник окружность делит гипотенузу на отрезки длиной 3 и 10Найти площадь треугольника?

Алгебра (95 баллов) | 71 просмотров
Дан 1 ответ
0 голосов

Пусть вписанная окружность делит катеты на отрезки длиной х. Тогда можем записать по теореме Пифагора и по свойству касательных, проведённых из одной точки:
(х+3)^2+(x+7)^2=100;
x^2+6x+9+x^2+14x+49=100;
2x^2+20x-42=0;
x^2+10x-21=0;
D/4=25+21=46;
x=кор(46)-5.
Значит, катеты треугольника равны кор(46)-2 и кор(46)+2 см соответственно. Перемножим катеты: 46-4=42 см2. Но это удвоенная площадь треугольника. Значит, площадь треугольника 21 см2.
Ответ: 21 см2



(63 баллов)