Угол параллелограмма равен 120⁰, стороны относяятся как 5:8, а меньшая диагональ равна...

0 голосов
70 просмотров

Угол параллелограмма равен 120⁰, стороны относяятся как 5:8, а меньшая диагональ равна 14см. Найти большуй диагональ и площадь параллелограмма.


Геометрия (27 баллов) | 70 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обозначим стороны за 5x и 8x. Рассмотрим треугольник со сторонами 5x.8x,14, и углом 60 градусов. По теореме косинусов, 14^2=(5x)^2+(8x)^2-2*5x*8x*cos60. Отсюда x=2, стороны равны 10, 16. По теореме косинусов из треугольника со сторонами 10, 16 и углом 120 градусов между ними находим вторую диагональ. d^2=10^2+16^2+10*16=512. d=sqrt(516). По формуле площади находим площадь параллелограмма, S=10*16*sin60=80sqrt(3).

(47.5k баллов)