Определи формулу для линейной функции y=kx, график которой параллелен прямой 6x−y+9=0...

0 голосов
99 просмотров

Определи формулу для линейной функции y=kx, график которой параллелен прямой 6x−y+9=0

Ответ:
y=?х

Ответить!


Алгебра (54 баллов) | 99 просмотров
Дан 1 ответ
0 голосов

Пример.Рассмотрим следующую линейную функцию: y = 5x – 3.

1) D(y) = R;

2) E(y) = R;

3) Функция общего вида;

4) Непериодическая;

5) Точки пересечения с осями координат:

Ox:  5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.

Oy:  y = -3, следовательно (0; -3) – точка пересечения с осью ординат;

6) y = 5x – 3 – положительна при x из (3/5; +∞),

y = 5x – 3 – отрицательна при x  из (-∞; 3/5);

7) y = 5x – 3 возрастает на всей области определения;Линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.

В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось. Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox:  y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy:  y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

Замечание.Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0;  kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x  из (-b/k; +∞),

y = kx + b – отрицательна при x  из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x  из (-∞; -b/k),

y = kx + b – отрицательна при x  из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b. 

(30 баллов)
0

простите но что все тика полчится

0

??