\frac{D}{4}=m^2-ac=m^2-m-5 " alt=" x^2-2mx+m+5=0 => \frac{D}{4}=m^2-ac=m^2-m-5 " align="absmiddle" class="latex-formula">
![x_{1,2}=\frac{-m\frac{+}{}\sqrt{\frac{D}{4}}}{a}= \frac{m\frac{+}{}\sqrt{m^2-m-5}}{1} x_{1,2}=\frac{-m\frac{+}{}\sqrt{\frac{D}{4}}}{a}= \frac{m\frac{+}{}\sqrt{m^2-m-5}}{1}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cfrac%7B-m%5Cfrac%7B%2B%7D%7B%7D%5Csqrt%7B%5Cfrac%7BD%7D%7B4%7D%7D%7D%7Ba%7D%3D+%5Cfrac%7Bm%5Cfrac%7B%2B%7D%7B%7D%5Csqrt%7Bm%5E2-m-5%7D%7D%7B1%7D)
![x_1= m+\sqrt{m^2-m-5}; x_2= m-\sqrt{m^2-m-5}; x_1= m+\sqrt{m^2-m-5}; x_2= m-\sqrt{m^2-m-5};](https://tex.z-dn.net/?f=x_1%3D+m%2B%5Csqrt%7Bm%5E2-m-5%7D%3B+x_2%3D+m-%5Csqrt%7Bm%5E2-m-5%7D%3B+)
![(x_1)^2+(x_2)^2= (m+\sqrt{m^2-m-5})^2 +(m-\sqrt{m^2-m-5})^2= (x_1)^2+(x_2)^2= (m+\sqrt{m^2-m-5})^2 +(m-\sqrt{m^2-m-5})^2=](https://tex.z-dn.net/?f=%28x_1%29%5E2%2B%28x_2%29%5E2%3D+%28m%2B%5Csqrt%7Bm%5E2-m-5%7D%29%5E2+%2B%28m-%5Csqrt%7Bm%5E2-m-5%7D%29%5E2%3D)
![= m^2+2m\sqrt{m^2-m-5}+m^2-m-5 + = m^2+2m\sqrt{m^2-m-5}+m^2-m-5 +](https://tex.z-dn.net/?f=%3D+m%5E2%2B2m%5Csqrt%7Bm%5E2-m-5%7D%2Bm%5E2-m-5+%2B)
![+m^2-2m\sqrt{m^2-m-5}+m^2-m-5= +m^2-2m\sqrt{m^2-m-5}+m^2-m-5=](https://tex.z-dn.net/?f=%2Bm%5E2-2m%5Csqrt%7Bm%5E2-m-5%7D%2Bm%5E2-m-5%3D)
![2m^2+2m^2-2m-5*2 = 4m^2-2m-10 2m^2+2m^2-2m-5*2 = 4m^2-2m-10](https://tex.z-dn.net/?f=2m%5E2%2B2m%5E2-2m-5%2A2+%3D+4m%5E2-2m-10)
Нужно найти минимальное значение, так как это формула параболы с положительным направлением ветвей, то минимумом будет вершина пораболы.
![m=\frac{-b}{2a}=\frac{2}{2*4}=\frac{1}{4} m=\frac{-b}{2a}=\frac{2}{2*4}=\frac{1}{4}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B-b%7D%7B2a%7D%3D%5Cfrac%7B2%7D%7B2%2A4%7D%3D%5Cfrac%7B1%7D%7B4%7D)