Решите срочно надо ???

0 голосов
26 просмотров

Решите срочно надо ???


image

Математика (28 баллов) | 26 просмотров
Дан 1 ответ
0 голосов

1 Задание
а) 
\left \{ {{2x+y=1} \atop {5x+2y=0}} \right. \\ \left \{ {{y=1-2x} \atop {5x+2*(1-2x)=0}} \right. \\ \left \{ {{y=1-2x} \atop {5x+2-4x=2}} \right. \\ \left \{ {{y=1-2x} \atop {x=0}} \right. \\ \left \{ {{y=1} \atop {x=0}} \right.
Ответ: y=1, x=0
б)
\left \{ {{x-y=4} \atop { x^{2}- y^{2} =40}} \right. \\ \left \{ {{x=y+4} \atop { (y+4)^{2}- y^{2} }=40} \right. \\ \left \{ {{x=y+4} \atop { y^{2}+16+8y-y^2 }=40 \right. \\ \left \{ {{x=y+4} \atop {8y=24}} \right. \\ \left \{ {{x=y+4} \atop {y=3}} \right. \\ \left \{ {{x=7} \atop {y=3}} \right.
Ответ: x=7,y=3

2 Задание
\left \{ {{y=4-x^2} \atop {x-y+2=0}} \right. \\ \left \{ {{y=4-x^2} \atop {x-4+x^2+2=0}} \right. \\ \left \{ {{y=4-x^2} \atop {x^2+x-2=0}} \right. \\ \left \{ {{y=4-x^2} \atop { x_{1} =1; x_{2} =-2}} \right. \\ \left \{ {{ y_{1}=3; y_{2}=0 } \atop {x_{1} =1; x_{2} =-2}} \right. \\

(134 баллов)