исследуйте функцию y=2*e^4*x - 3*x*y^4*x ** монотонность и экстремумы. помогите...

0 голосов
71 просмотров

исследуйте функцию y=2*e^4*x - 3*x*y^4*x на монотонность и экстремумы.

помогите пожалуйста вопрос жизни и смерти...


Алгебра (42 баллов) | 71 просмотров
Дан 1 ответ
0 голосов

\\y=e^{4x}(2-3x)\\ y'=4e^{4x}(2-3x)+e^{4x}\cdot(-3)\\ y'=e^{4x}(8-12x-3)\\ y'=-e^{4x}(12x-5)\\ -e^{4x}(12x-5)=0\\ 12x-5=0\\ 12x=5\\ x=\frac{5}{12}\\

 

при x∈(-∞,5/12) y'>0 ⇒ функция возрастает

при x∈(5/12,∞) y'<0 ⇒ функция убывает</p>

таким образом в точке x=5/12 находится максимум

 

\\y_{max}=e^{4\cdot\frac{5}{12}}(2-3\cdot\frac{5}{12})\\ y_{max}=e^{\frac{5}{3}}(2-\frac{5}{4})\\ y_{max}=e^{\frac{5}{3}}(\frac{8}{4}-\frac{5}{4})\\ y_{max}=\frac{3}{4}e^{\frac{5}{3}}

(17.1k баллов)