Пусть x (км/ч) - рейсовая скорость автобуса, тогда (x+8) - скорость автобуса в режиме экспресса. Пусть S - длина маршрутного пути
Тогда t1=S/x ----(1)
t1 - время, которое затрачивает автобус в обычном режиме
При этом время t2, затраченное автобусом в режиме экспресса, равно:
t2=S/(x+8)-----(2)
По условию t2=t1-4/60=t1- 1/15, поэтому (2) примет вид:
t1=1/15 +S/(x+8)----(3)
Левые части (1) и (3) равны, а, значит, равны их правые части:
1/15 + S/(x+8) = S/x, или S[1/x - 1/(x+8)]=1/15, или
S*[(x+8-x)/(x(x+8))]=1/15, или
8*15*S=x(x+8), или 120*S=(x^2)+8x, S=16 км по условию, поэтому имеем:
(x^2) + 8x - 16*120=0------(4)
Найдем дискриминант D=8*8-4*(-16)*120=64+64*120=64*121=(8*11)^2=(88)^2
Поскольку D > 0, то уравнение (4) имеет два различных действительных корня:
x1=(-8+88)/2 = 40 км/ч
x2=(-8-88)/2 = -48 км/ч не имеет смысла, т. к. x > 0
Таким образом, рейсовая скорость x=x1=40 км/ч
Подставим (2) вместо x его найденное значение, найдем искомое время t2:
t2=S/(x+8) =16/(40+8) ч = 16/48 ч = (1/3) ч = (60/3) минут = 20 минут