Пусть у Кати х марок, у Павла у марок.
Павел отдал Кате х марок, тогда у Кати стало 2х марок, а Павла (у-х) марок.
Катя отдала Павлу (у-х) марок, тогда у Павла стало 2(у-х) марок, а у Кати
2х-(у-х)=(3х-у) марок.
По условию 2(у-х) марок Павла на 40 больше, чем у него было, т.е. у марок.
Составляем первое уравнение
2(у-х)-40=у
По условию (3х-у) марок Кати в три раза меньше, чем у нее было,т. е х марок.
Составляем второе уравнение
х=3(3х-у)
Решаем систему двух уравнений:
{2(у-х)-40=у ⇒ у = 2х+40
{х=3(3х-у) ⇒ 3у=8х
3(2х+40)=8х
6х+120=8х\2х=120
х=60
у=2х+40=2·60+40=120+40=160
О т в е т. б) 160 марок собрал Павел.