Разность квадратов двух последовательных натуральных чисел равна 21

0 голосов
41 просмотров

Разность квадратов двух последовательных натуральных чисел равна 21


Математика (12 баллов) | 41 просмотров
Дан 1 ответ
0 голосов

Пусть Х-первое число
Х+1 второе число
х²+(х+1)²=21
раскрываем скобки: х²+2х*1+1²-х²=21
2х+1=21
2х=21-1=20
х=10 первое число
10+1=11 второе число

(8.0k баллов)
0

вместо плюса минус будет=: х²-(х+1)²=21.... прошу прощения за ошибку..