Уравнение касательной к графику функции f(x) в точке x0 имеет вид: y=f'(x0)*(x-x0)+f(x0).
Находим значение самой функции в этой точке x0=0: 4*0 - sin 0 + 1 = 1.
Находим значение производной: f'(x) = 4 - cos x. При x=0 f'(x) = 4 - 1 = 3.
Таким образом, уравнение касательной y=3*x+1.