Докажите что при любом целом значении x выражение x^3+41x делится ** 6

0 голосов
143 просмотров

Докажите что при любом целом значении x выражение x^3+41x делится на 6


Алгебра (145 баллов) | 143 просмотров
0

Просто жду чьего нибудь ответа, самому тоже надо

Дан 1 ответ
0 голосов

Множество целых чисел \mathbb{Z} разделим на три класса:
\mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, где + обозначает операцию объединения и изначает, что множества \mathbb{Z}_0,\mathbb{Z}_1,\mathbb{Z}_2, дисъюнктны.
\mathbb{Z}_0 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3}\}
\mathbb{Z}_1 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+1}\}
\mathbb{Z}_2 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+2}\}
Данное разделение множества целых чисел существует по принципу решета Эрастофена.
x \equiv 0\ \ (mod 6) \Leftrightarrow x \equiv 0 \ \ (mod 2) \land x \equiv 0 \ \ (mod3)
x^3 + 41x = x(x^2 + 41).
Так как при четном x выражение делится на два, а при нечетном x^2 + 41 делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3:
Так как x \in \mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, то рассмотрим три случая:
1) x \in \mathbb{Z}_0 \Rightarrow x^3 + 41x \equiv 0 \ \ (mod 3) так как x^3 + 41x = x(x^2+41).
2) x \in \mathbb{Z}_1 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 1}
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 1 + 41 = 3*m + 42 = 3*n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
3) x \in \mathbb{Z}_2 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 2}.
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 4 + 41 = 3m + 45 = 3n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
Тогда для всех x \in \mathbb{Z} выражение x^3+41x делится на 6.

(1.2k баллов)