Параллельные прямые a и b пересечены двумя параллельными секущими AB и CD, причем точки A...

0 голосов
743 просмотров

Параллельные прямые a и b пересечены двумя параллельными секущими AB и CD, причем точки A и С лежат на прямой a, а точки B и D – на прямой b. Докажите, что AC=BD.


Математика (285 баллов) | 743 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Способ 1.
Четырехугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых) - параллелограмм. 
По условию АС и  ВD, АВ  и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм. 
В параллелограмме противоположные стороны равны. ⇒ 
АС=ВD и АВ-СD.
Способ 2.
Соединив А и D, получим треугольники АСD и ABD.
В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны. 
Накрестлежащие углы при параллельных прямых АВ и CD   секущей АD - равны.
Сторона AD- общая.
Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны.
 
⇒АВ=СD.

(546 баллов)
0

Спасибо)