Осевое сечение конуса – равнобедренный прямоугольный треугольник с гипотенузой 12 см. Найдите полощадь полной поверхности конуса. я не могу понять ответ в задаче который получается, можно поподробней) решение
так как сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза, а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . так как треугольник АВСпрямоугольный,то AC=AB(представим как х) ПОлучится уравнение:
х2+х2=144.
2х(в квадрате)=144 .
х=корень из 72 то есть 3 корней из 8 . AC=3 корней из 8(радиус)
1) Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п.
2)Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п