Помогите пожалуйста, ** завтра делать надо ((((

0 голосов
35 просмотров

Помогите пожалуйста, на завтра делать надо ((((


image

Геометрия (26 баллов) | 35 просмотров
0

нет

0

Сейчас попробую

0

я жду

0

проходили теорему Фалеса?

0

проходим только

0

учительница толком и не объясняет нам

0

Вам объясняли её?

0

нет

0

Вообщем задача решается через неё , сейчас я напишу

0

спасибо

Дано ответов: 2
0 голосов
Правильный ответ

Так как по условию АЕ=ЕВ=4 и ЕF параллельна АС, то это значит, что EF - это средняя линия треугольника АВС. Значит, BF=FC=5; BC=BF+FC=5+5=10; AB=AE+EB=4+4=8; P=АВ+ВС+АС=8+10+12=30; ответ: 30

(30.1k баллов)
0

Накручено в первом решении, потому что автор вопроса в комментариях сказал, что не изучали подобие треугольников. а т.Фалеса проходят.

0 голосов

Я обозначил Крупный треугольник ABC , начиная снизу слева.
Проведём через точку B прямую BK  параллельную EF .
BK║EF║AC
Теперь посмотрим на прямые BC и AB.
На прямой AB прямые BK , EF , AC Отделяют равные отрезки .
Поскольку каждая из них (BK , EF , AC) пересекает BC , то по теореме Фалеса отрезки , образованные этими прямыми на прямой BC , между собой равны . BF = FC = 5 см
Итак периметр равен BC + AB + AC = 12 + 4*2 + 5*2 =30 см
Ответ : 30 см

Если вы нашли ошибку или что-то не поняли , то напишите , пожалуйста , автору .
Powered by Plotofox .

(2.6k баллов)
0

спасибо большое

0

Теорема Фалеса:Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне. И если решать по теореме Фалеса, тогда из того, что АЕ=ЕВ сразу следует ВF=FС. Без всяких дополнительных построений. Зачем нужно проводить прямую ВК?

0

Если уж быть точным, то определение несколько другое. "Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки". При этом не имеет значения взаимное расположение секущих, как не важно, где находятся отрезки на секущих. Ответ верный - это главное.