Найти производную y=1/корень из 3х+1 у=1/корень из x^2 -3x+2 Найти значение...

0 голосов
60 просмотров

Найти производную

y=1/корень из 3х+1

у=1/корень из x^2 -3x+2

Найти значение производной в указанной точке

f(x)=корень из 3/2 * sin(3x-п/4) x=п/12 , х=-п/6


Алгебра (62 баллов) | 60 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

y=\frac{1}{\sqrt{3x+1}}\\y'=-\frac{3}{2\sqrt{(3x+1)^3}}=-\frac{3}{(6x+2)\sqrt{3x+1}}

y=\frac{1}{\sqrt{x^2-3x+2}}\\y'=-\frac{2x-3}{2\sqrt{(x^2-3x+2)^3}}=-\frac{2x-3}{(2x^2-6x+4)\sqrt{x^2-3x+2}}

f(x)=\frac{\sqrt3}{2}sin(3x-\pi/4)\\ f'(x)=\frac{3\sqrt3}{2}cos(3x-\pi/4)\\ f'(\pi/12)=\frac{3\sqrt3}{2}cos(3*\pi/12-\pi/4)=\frac{3\sqrt3}{2}\\ f'(-\pi/6)=\frac{3\sqrt3}{2}cos(-3*\pi/6-\pi/4)=\frac{3\sqrt3}{2}*(-\frac{\sqrt2}{2})=-\frac{3\sqrt6}{4}

(26.0k баллов)