АВС - равнобедренный треугольник, в котором
АВ=ВС=10см (в равнобедренном треугольнике боковые стороны равны между собой),
АС=10√3 - это основание треугольника,
∠А=∠С.
ВД - высота треугольника.
Поскольку высота равнобедренного треугольника, опущенная на его основание, является биссектрисой и медианой, значит АД=СД=АС/2=10√3 / 2=5√3 см.
Треугольник АВД - прямоугольный, ∠Д=90°, поскольку ВД - это высота.
Теорема Пифагора: квадрат гипотенузы=сумме квадратов катетов:
АВ²=ВД²+АД²
10²=ВД²+(5√3)²
100=ВД²+75
ВД²=100-75
ВД²=25
ВД=5 см - это высота треугольника АВС.
cos∠А=АД/АВ
cos∠А=5√3/10
cos∠А=√3/2
∠А=30°
∠А=∠С= 30°
Сумма всех углов любого треугольника = 180°
∠А+∠В+∠С= 180°
30°+∠В+30°=180°
∠В=120°.