Геометрический смысл производной функции y=f(x) в некоторой точке x - это тангенс угла наклона касательной, проведенной к графику функции в некоторой точке A(x,y).
Тангенс угла положительный, если угол находится в I или III четвертях. Легко видеть, что в этом случае функция должна возрастать (см. первое вложение). Мы говорим, что функция y=f(x) монотонно возрастает на участке x∈[a;b], если y(b)>y(a) для любой пары точек, находящихся на этом участке. Графически это означает, что для пары точек A и B когда Bx>Ax, выполняется условие By>Ay.
Области возрастания функции показаны во втором вложении желтым. По заданию нужно учитывать только те точки, в которых х целочисленно. Они показаны красным. Подсчетом получаем 10 точек.