Какую наибольшую сумму цифр не может иметь число, делящееся ** 11?

0 голосов
38 просмотров

Какую наибольшую сумму цифр не может иметь число, делящееся на 11?


Математика (17 баллов) | 38 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Число делится на 11, если разность суммы цифр на нечетных разрядах и суммы цифр на четных разрядах делится на 11.

Покажем, что число, делящееся на 11, может иметь любую сумму цифр, большую 9. Действительно, для любого четного числа  с суммой цифр s>11 подойдет число из n двоек. Для любого нечетного числа выпишем число из s-11 двоек и допишем к нему число 407. (например, для s=11 это будет само 407, для s=13 число 11407, для s=17 число 111111407). Легко видеть, что сумма цифр на нечетных разрядах полученного числа на 4+7=11 больше суммы цифр на четных разрядах числа, что и требовалось.

Теперь рассмотрим произвольное число с суммой цифр 9 и покажем, что оно не делится на 11. Пусть сумма цифр на его четных разрядах равна a, сумма цифр на его нечетных разрядах равна b, a+b=9, оба числа целые неотрицательные. Рассмотрим случай, когда a>b, случай b
Ответ: 9.

(47.5k баллов)